Chs. 29/30: EM Waves, Reflection, Refraction Tuesday November 15th

- V. IMPORTANT: Final exam will be in HCB103/316
 - There will be assigned seating (TBA)
- Mini-exam 5 on Thursday (AC circuits and EM waves)
- 55 unregistered *i*Clickers any takers?
 - •Finish Electromagnetic waves (Ch. 29)
 - •Review: wave solutions and relations between quantities
 - Energy flux and intensity
 - •Reflection and Refraction (Ch. 30)
 - •Wave reflection from an interface
 - •Wave transmission through an interface (refraction)
 - •Snell's law
 - Total Internal reflection
 - Dispersion

Reading: up to page 540 in the text book (Ch. 29/30)

Maxwell's equations

Table 29.2 Maxwell's Equations

Law	Mathematical Statement	What It Says
Gauss for \vec{E}	$\oint \vec{E} \cdot d\vec{A} = \frac{q}{\epsilon_0}$	How charges produce electric field; field lines begin and end on charges.
Gauss for \overrightarrow{B}	$\oint \vec{B} \cdot d\vec{A} = 0$	No magnetic charge; magnetic field lines don't begin or end.
Faraday	$\oint \vec{E} \cdot d\vec{r} = -\frac{d\Phi_B}{dt}$	Changing magnetic flux produces electric field.
Ampère	$\oint \vec{B} \cdot d\vec{r} = \mu_0 I + \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$	Electric current and changing electric flux produce magnetic field.

The main thing to note here is the symmetry in the last two equations: a time varying magnetic field produces an electric field; similarly, a time varying electric field produces a magnetic field.

Electromagnetic waves

•The E and B fields are still related via Ampère's and Faraday's laws.

•For a plane wave traveling in the x direction (see text):

$$\vec{E}(x,t) = E_{p} \sin(kx - \omega t)\hat{j}$$
$$\vec{B}(x,t) = B_{p} \sin(kx - \omega t)\hat{k}$$
Direction of motion

Electromagnetic waves

•Plugging these wave solutions into the wave equation:

$$\nabla^{2} E_{y} = -k^{2} E_{y} = \mu_{o} \varepsilon_{o} \frac{\partial^{2} E_{y}}{\partial t^{2}} = -\omega^{2} \mu_{o} \varepsilon_{o} E_{y}$$
$$\Rightarrow \frac{\omega^{2}}{k^{2}} = c^{2} = \frac{1}{\mu_{o} \varepsilon_{o}}, \quad \text{or} \quad c = \sqrt{\frac{1}{\mu_{o} \varepsilon_{o}}}$$

Plugging these wave solutions into Faraday's law:

$$\frac{\partial E_{y}}{\partial x} = kE_{p}\cos\left(kx - \omega t\right) = -\frac{\partial B_{z}}{\partial t} = \omega B_{p}\cos\left(kx - \omega t\right)$$
$$\Rightarrow \frac{E_{p}}{B_{p}} = \frac{\omega}{k} = c$$

Poynting vector and light intensity

This is the energy 'flux' associated with the EM wave - like an 'energy current density' or energy crossing unit area perpendicular to the flow, per unit time.

$$ec{m{S}} = rac{1}{\mu_o}ec{m{E}} imes ec{m{B}}$$

Direction of motion

Right-hand rule \vec{S}

Intensity (average rate of energy incidence per unit area):

 $=\frac{1}{\mu_{o}}EB = \frac{1}{\mu_{o}c}E^{2} = \varepsilon_{o}cE^{2} = \frac{c}{\mu_{o}}B^{2}$

$$I = S_{_{\mathrm{av}}} = \left\langle S \right\rangle = \frac{1}{\mu_{_{\mathrm{o}}}c} E_{_{\mathrm{p}}}^2 \left\langle \sin^2 \left(kx - \omega t \right) \right\rangle = \frac{1}{2\mu_{_{\mathrm{o}}}c} E_{_{\mathrm{p}}}^2$$

Intensity from a Point Source

Consider a light source that emits uniformly in all directions [note: no single oscillator could do this, but a large number of oscillators can, e.g., a light bulb.]

- There are a number of different ways to rationalize this, both in terms of the wave- and particle-like nature of light.
- The latter involves conservation of energy/momentum, i.e., just like a perfect elastic collision between a billiard board and the rail.

Refractive index

When a wave travels into a medium other than vacuum, the constants ε_0 and μ_0 are modified by their permeabilities κ_e and κ_m , thus the speed of the electromagnetic wave is given by:

$$v = \sqrt{\frac{1}{\kappa_e \kappa_m}} \sqrt{\frac{1}{\mu_o \varepsilon_o}} = c \sqrt{\frac{1}{\kappa_e \kappa_m}} = \frac{c}{n},$$

where $n = (\kappa_e \kappa_m)^{1/2}$ is called the refractive index of the material. Medium 1 Medium 2

Refractive index

When a wave travels into a medium other than vacuum, the constants ε_0 and μ_0 are modified by their permeabilities κ_e and κ_m , thus the speed of the electromagnetic wave is given by:

$$v = \frac{c}{n}$$

where $n = (\kappa_e \kappa_m)^{1/2}$ is called the refractive index of the material.

Some Indices	of	Refraction ^a
--------------	----	--------------------------------

Medium	Index	Medium	Index
Vacuum (exactly)	1.00000	Typical crown glass	1.52
Air (STP)	1.00029	Sodium chloride	1.54
Water (20°C)	1.33	Polystyrene	1.55
Acetone	1.36	Carbon disulfide	1.63
Ethyl alcohol	1.36	Heavy flint glass	1.65
Sugar solution (30%)	1.38	Sapphire	1.77
Fused quartz	1.46	Heaviest flint glass	1.89
Sugar solution (80%)	1.49	Diamond	2.42
0			

^{*a*} For a wavelength of 589 nm (yellow sodium light).

