Chs. 29/30: EM Waves, Reflection, Refraction Tuesday November $15^{\text {th }}$

- V. IMPORTANT: Final exam will be in HCB103/316
- There will be assigned seating (TBA)
- Mini-exam 5 on Thursday (AC circuits and EM waves)
- 55 unregistered i Clickers - any takers?
-Finish Electromagnetic waves (Ch. 29)
-Review: wave solutions and relations between quantities
-Energy flux and intensity
-Reflection and Refraction (Ch. 30)
- Wave reflection from an interface
- Wave transmission through an interface (refraction)
- Snell's law
- Total Internal reflection
- Dispersion

Reading: up to page 540 in the text book (Ch. 29/30)

Maxwell's equations

Table 29.2 Maxwell's Equations

Law	Mathematical Statement	What It Says
Gauss for \vec{E}	$\oint \vec{E} \cdot d \vec{A}=\frac{q}{\epsilon_{0}}$	How charges produce electric field; field lines begin and end on charges.
Gauss for \vec{B}	$\oint \vec{B} \cdot d \vec{A}=0$	No magnetic charge; magnetic field lines don't begin or end.
Faraday	$\oint \vec{E} \cdot d \vec{r}=-\frac{d \Phi_{B}}{d t}$	Changing magnetic flux produces electric field.
Ampère	$\oint \vec{B} \cdot d \vec{r}=\mu_{0} I+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}$	Electric current and changing electric flux produce magnetic field.

The main thing to note here is the symmetry in the last two equations: a time varying magnetic field produces an electric field: similarly, a time varying electric field produces a magnetic field.

Electromagnetic waves

-The E and B fields are still related via Ampère's and Faraday's laws.
-For a plane wave traveling in the x direction (see text):

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{E}}(x, t)=E_{\mathrm{p}} \sin (k x-\omega t) \hat{\boldsymbol{j}} \\
& \overrightarrow{\boldsymbol{B}}(x, t)=B_{\mathrm{p}} \sin (k x-\omega t) \hat{\boldsymbol{k}}
\end{aligned}
$$

Electromagnetic waves

- Plugging these wave solutions into the wave equation:

$$
\begin{aligned}
& \nabla^{2} E_{y}=-k^{2} E_{y}=\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} \frac{\partial^{2} E_{y}}{\partial t^{2}}=-\omega^{2} \mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} E_{y} \\
& \Rightarrow \frac{\omega^{2}}{k^{2}}=c^{2}=\frac{1}{\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}}}, \quad \text { or } \quad c=\sqrt{\frac{1}{\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}}}}
\end{aligned}
$$

-Plugging these wave solutions into Faraday's law:

$$
\begin{gathered}
\frac{\partial E_{y}}{\partial x}=k E_{\mathrm{p}} \cos (k x-\omega t)=-\frac{\partial B_{z}}{\partial t}=\omega B_{\mathrm{p}} \cos (k x-\omega t) \\
\Rightarrow \frac{E_{\mathrm{p}}}{B_{\mathrm{p}}}=\frac{\omega}{k}=c
\end{gathered}
$$

Poynting vector and light intensity

This is the energy 'flux' associated with the EM wave - like an 'energy current density' or energy crossing unit area perpendicular to the flow, per unit time.

$$
\overrightarrow{\boldsymbol{S}}=\frac{1}{\mu_{o}} \overrightarrow{\boldsymbol{E}} \times \overrightarrow{\boldsymbol{B}}
$$

Right-hand

$$
S=\frac{1}{\mu_{\mathrm{o}}} E B=\frac{1}{\mu_{\mathrm{o}} c} E^{2}=\varepsilon_{\mathrm{o}} c E^{2}=\frac{c}{\mu_{\mathrm{o}}} B^{2}
$$

Intensity (average rate of energy incidence per unit area):

$$
I=S_{\mathrm{av}}=\langle S\rangle=\frac{1}{\mu_{\mathrm{o}} c} E_{\mathrm{p}}^{2}\left\langle\sin ^{2}(k x-\omega t)\right\rangle=\frac{1}{2 \mu_{\mathrm{o}} c} E_{\mathrm{p}}^{2}
$$

Intensity from a Point Source

Consider a light source that emits uniformly in all directions [note: no single oscillator could do this, but a large number of oscillators can, e.g., a light bulb.]

$$
I=\langle S\rangle=\frac{P}{4 \pi r^{2}}
$$

Wave Reflection (Ch. 30)

- There are a number of different ways to rationalize this, both in terms of the wave- and particle-like nature of light.
- The latter involves conservation of energy/momentum, i.e., just like a perfect elastic collision between a billiard board and the rail.

Refractive index

When a wave travels into a medium other than vacuum, the constants ε_{0} and μ_{0} are modified by their permeabilities κ_{e} and κ_{m} thus the speed of the electromagnetic wave is given by:

$$
v=\sqrt{\frac{1}{\kappa_{e} \kappa_{m}}} \sqrt{\frac{1}{\mu_{o} \varepsilon_{o}}}=c \sqrt{\frac{1}{\kappa_{e} \kappa_{m}}}=\frac{c}{n},
$$

where $n=\left(\kappa_{e} \kappa_{m}\right)^{1 / 2}$ is called the refractive index of the material.
Medium 1 Medium 2

Refractive index

When a wave travels into a medium other than vacuum, the constants ε_{0} and μ_{0} are modified by their permeabilities κ_{e} and κ_{m}, thus the speed of the electromagnetic wave is given by:

$$
v=\frac{c}{n}
$$

where $n=\left(\kappa_{e} \kappa_{m}\right)^{1 / 2}$ is called the refractive index of the material.
Some Indices of Refraction ${ }^{a}$

Medium	Index	Medium	Index
Vacuum (exactly)	1.00000	Typical crown glass	1.52
Air (STP)	1.00029	Sodium chloride	1.54
Water $\left(20^{\circ} \mathrm{C}\right)$	1.33	Polystyrene	1.55
Acetone	1.36	Carbon disulfide	1.63
Ethyl alcohol	1.36	Heavy flint glass	1.65
Sugar solution (30\%)	1.38	Sapphire	1.77
Fused quartz	1.46	Heaviest flint glass	1.89
Sugar solution (80\%)	1.49	Diamond	2.42

[^0]
Refraction and Snell's law

[^0]: ${ }^{\text {a }}$ For a wavelength of 589 nm (yellow sodium light).

